Token to Words

Expanding identified token to words

- numbers+type = word list
- homographs+type = words
- symbols broken down and pronounced
- unknown words: as word or letter sequence
(define (token_to_words token name)
 (cond
 ((string-matches name "[0-9]+’s") ;; e.g. 1950’s
 (item.set_feat token "token_pos" "year")
 (append
 (builtin_english_token_to_words token (string-before name "’s"))
 (list '(name "’s")(pos nnp))))
 ((string-matches name "[0-9]+-[0-9]+") ;; e.g. 12-14
 ;; just a simply word
 (builtin_english_token_to_words token name))))
Example token rule

for “$120 million”

(define (token_to_words token name)
 (cond
 ((and (string-matches name "\$[0-9,]+\(\.[0-9]+\)?")
 (string-matches (item.feat token "n.name")
 ".*illion.?"))
 (append
 (english_token_to_words token (string-after name ""))
 (list
 (item.feat token "n.name"))))
 ((and (string-matches (item.feat token "p.name")
 "\$[0-9,]+\(\.[0-9]+\)?")
 (string-matches name ".*illion.?"))
 (list "dollars"))
 (t
 (english_token_to_words token name))))
Text modes

If we know the type of text being synthesizing (e.g. email, Latex, HTML) we can tailor the processing.

□ mode specific tokenizing
□ using tokens to direct synthesis (emphasis, selecting voices etc.)
□ mode specific lexical items.
□ mode specific syntactic forms.

Explicit markup and/or Custom models
Festival text modes

Customizable modes for synthesis.
Each mode can have

- A (Unix) filter program to extract/delete information
- An `init_function` on entering the mode.
- An `exit_function` on exiting the mode.
An example text mode for email

A filter to extract , from line, subject and body from email message

#!/bin/sh
Email filter for Festival tts mode
usage: email_filter mail_message >tidied_mail_message
grep "^From: " $1
echo
grep "^Subject: " $1
echo
sed '1,/^$/ d' $1
setup mode specific token functions

(define (email_init_func)
 "Called on starting email text mode."
 (set! email_previous_t2w_func token_to_words)
 (set! english_token_to_words email_token_to_words)
 (set! token_to_words email_token_to_words))

(define (email_exit_func)
 "Called on exit email text mode."
 (set! english_token_to_words email_previous_t2w_func)
 (set! token_to_words email_previous_t2w_func))
(define (email_token_to_words token name)
 "Email specific token to word rules."
 (cond
 ((string-matches name "<.*@.*>")
 (append
 (email_previous_t2w_func token
 (string-after (string-before name "@") "<"))
 (cons
 "at"
 (email_previous_t2w_func token
 (string-before (string-after name "@") ">"))))))
((and (string-matches name ">")
 (string-matches (item.feat
defect "whitespace")
 "[\t\n]*\n *")
 (voice_don_diphone)
 nil ;; return nothing to say
)
(t ;; for all other cases
 (if (string-matches (item.feat
defect "whitespace")
 ".*\n[\n]*")
 (voice_rab_diphone))
 (email_previous_t2w_func token name))))
}
(set! tts_text_modes
 (cons
 (list
 'email ;; mode name
 (list ;; email mode params
 (list 'init_func email_init_func)
 (list 'exit_func email_exit_func)
 '(filter "email_filter")))
 tts_text_modes))
Alan W. Black writes on 27 November 1996:

> I’m looking for a demo mail message for Festival, but can’t seem to find any suitable. It should at least have some quoted text, and have some interesting tokens like a URL or such like.
>
> Alan

Well I’m not sure exactly what you mean but awb@cogsci.ed.ac.uk has an interesting home page at http://www.cstr.ed.ac.uk/~awb/ which might be what you’re looking for.

Alan

> PS. Will you attend the course?

I hope so

by for now
Reading addresses

Smith, Bobbie Q, 3337 St Laurence St, Fort Worth, TX 71611-5484, (817)839-3689
Anderson, W, 445 Sycamore Way NE, Lincoln, NE 98125-5108, (212)404-9988
Mark-up languages

- Building special text modes might be too difficult
- Need general method for general markup:
 - breaks, voice changing
 - pronunciations, date/time identifies
- All synthesizers include this but are incompatible
- Proposal of *general* method:
 - SGML/XML based
 - *basic* tags only
 - cf. JSML, VoiceXML
The boy saw the girl in the park with the telescope. The boy saw the girl in the park with the telescope.

Some English first and then some Spanish.
<LANGUAGE ID="SPANISH">Hola amigos.</LANGUAGE>
<LANGUAGE ID="NEPALI">Namaste</LANGUAGE>

Good morning My name is Stuart, which is spelled though some people pronounce it My telephone number is 2787.

I used to work in Buckleuch Place, but no one can pronounce that.

By the way, my telephone number is actually
SABLE: for marking emphasis

What will the weather be like today in Boston?
It will be <emph>rainy</emph> today in Boston.

When will it rain in Boston?
It will be rainy <emph>today</emph> in Boston.

Where will it rain today?
It will be rainy today in <emph>Boston</emph>.
But we need a richer markup

- SABLE is quite limited:
 - Now embodied in SSML, VoiceXML and JSML

- Concept to speech is richer:
 - translation and generation systems
 - Syntactic, Semantic
 - Anaphoric, Rhetorical, Speech act etc.

- Mark up should be:
 - abstract not low-level
 - e.g. type=question not
 - pitch rise at end
Data: four domains

nantc: press-wire news data
classifieds: real estate ads from on-line newspapers
pc110: palmtop mailing list (e-mail like)
rfr: rec.food.recipes USENET messages

<table>
<thead>
<tr>
<th>Corpus</th>
<th>nantc</th>
<th>ads</th>
<th>pc110</th>
<th>rfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>total # tokens</td>
<td>4.3m</td>
<td>415k</td>
<td>264k</td>
<td>209k</td>
</tr>
<tr>
<td># NSWs</td>
<td>377k</td>
<td>180k</td>
<td>72k</td>
<td>46k</td>
</tr>
<tr>
<td>% NSW</td>
<td>8.8%</td>
<td>43.4</td>
<td>27.3</td>
<td>22.0</td>
</tr>
<tr>
<td>Token</td>
<td>Description</td>
<td>Examples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPN</td>
<td>abbreviation, contractions</td>
<td>adv, N.Y, mph, gov’t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSEQ</td>
<td>letter sequence</td>
<td>CIA, D.C, CDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASWD</td>
<td>read as word</td>
<td>CAT, proper names</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSPL</td>
<td>misspelling</td>
<td>geography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUM</td>
<td>number (cardinal)</td>
<td>12, 45, 1/2, 0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORD</td>
<td>number (ordinal)</td>
<td>May 7, 3rd, Bill Gates III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTEL</td>
<td>telephone (or part of)</td>
<td>212 555-4523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDIG</td>
<td>number as digits</td>
<td>Room 101,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIDE</td>
<td>identifier</td>
<td>747, 386, I5, PC110, 3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADDR</td>
<td>number as street address</td>
<td>5000 Pennsylvania, 4523 Forbes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZIP</td>
<td>zip code or PO Box</td>
<td>91020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTIME</td>
<td>a (compound) time</td>
<td>3.20, 11:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDATE</td>
<td>a (compound) date</td>
<td>2/2/99, 14/03/87 (or US) 03/14/87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYER</td>
<td>year(s)</td>
<td>1998 80s 1900s 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONEY</td>
<td>money (US or otherwise)</td>
<td>$3.45 HK$300, Y20,000, $200K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMONY</td>
<td>money tr/m/billions</td>
<td>$3.45 billion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRCT</td>
<td>percentage</td>
<td>75%, 3.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLNT</td>
<td>not spoken, word boundary</td>
<td>word boundary or emphasis character: M.bath, KENT*REALTY, really, ***Added</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUNC</td>
<td>not spoken, phrase boundary</td>
<td>non-standard punctuation: “...” in DECIDE...Year, “” in $99,9KWhites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNSP</td>
<td>funny spelling</td>
<td>sllooooww, sh*t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>url, pathname or email</td>
<td>http://apj.co.uk, /usr/local, phj@teleport.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td>token should be ignored</td>
<td>ascii art, formatting junk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data: NSW distributions

	Domains			
	nantc	classifieds	pc110	rfr
ASWD	83.49	28.64	64.60	72.36
LSEQ	9.10	3.00	22.60	2.11
EXPN	7.41	68.36	12.80	25.53

	Domains			
	nantc	classifieds	pc110	rfr
NUM	66.11	58.26	43.77	97.90
NYER	19.06	0.70	0.51	0.27
NORD	9.37	3.37	4.45	0.11
NIDE	2.24	5.83	37.41	0.47
NTEL	1.25	25.92	1.32	0.02
Hand labeling

- Each NSW presented in context
 - Three words either side

- One letter choice of TAG
 - or explicit expansion
 - splits “WinNT” \(\rightarrow \) “Win” “NT”

- Test of inter-labeler agreement
 - 3 labelers nantc, 2268 samples, \(\kappa = 0.81 \)
 - 9 labelers ads, 622 samples, \(\kappa = 0.84 \)

- Labeling held as XML markup

Today I bought a Sony

\(<\text{W NSW="LSEQ"> NP-F530</text></W><\text{W NSW="SPLT"></text><text{WS NSW="NUM"> 1350</text><text{WS NSW="EXPN">maH.</text><text{WS}></text></text></text>

Like your

\(<\text{W NSW="NIDE"> 550</text></W> it is slightly larger than the native

\(<\text{W NSW="LSEQ"> IBM</text></W> battery pack. It’s been

now on it’s first charge - I am charging in the

\(<\text{W NSW="LSEQ"> PC110.

</text>
Can we find NSWs?

- Tokens not in lexicon
- Plus
 - single character tokens
 - “punctuation”
 - common abbreviations (in lexicon)
- Misses homographic abbreviations/standard words
 - “sun”, “Jan”
 - also domain specific ones, “kit” and “named”

<table>
<thead>
<tr>
<th>Domain Dependent?</th>
<th>Detection Algorithm</th>
<th>Precision//Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nantc</td>
</tr>
<tr>
<td>No</td>
<td>non-lexical</td>
<td>55/79</td>
</tr>
<tr>
<td>No</td>
<td>+ sct + abbrevs</td>
<td>44/93</td>
</tr>
<tr>
<td>Yes</td>
<td>++ abbrevs</td>
<td>39/93</td>
</tr>
</tbody>
</table>
Theoretical models

- Source-channel model:

\[\hat{w} = \arg\max p(w|o) \] \hspace{1cm} (1)

\[= \arg\max p(o|w)p(w) \] \hspace{1cm} (2)

- Direct approach:

\[\hat{w} = \arg\max p(w|o) \] \hspace{1cm} (3)
Architecture

pls wash your WS99 coff.
cup w/n-grams :)

Text
Tokenizer
Tokens
Split Tokens
Splitter
Tagged Tokens
Classifier
Word Lattices
Tag Expanders
Language Model
Best Words
Splitting

- whitespace separated tokens isn’t fine enough
- Further splitting is required:

 $1500\text{km} \rightarrow 1500\ \text{km}$
 $\text{and/or} \rightarrow \text{and} / \text{or}$
 $\text{WinNT} \rightarrow \text{Win NT}$

- Ideally deterministic, domain independent
- Simple regular expressions
Splitting

<table>
<thead>
<tr>
<th></th>
<th>NANTC</th>
<th>classifieds</th>
<th>pc110</th>
<th>RFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>98.89</td>
<td>94.96</td>
<td>87.66</td>
<td>98.88</td>
</tr>
<tr>
<td>Precision</td>
<td>74.41</td>
<td>87.32</td>
<td>81.68</td>
<td>89.51</td>
</tr>
<tr>
<td>Split Correct</td>
<td>92.54</td>
<td>85.99</td>
<td>74.11</td>
<td>89.54</td>
</tr>
<tr>
<td>Total Correct</td>
<td>98.45</td>
<td>95.19</td>
<td>92.97</td>
<td>98.40</td>
</tr>
</tbody>
</table>

Misses:
- ESANDWICH, 3400sq.ft, xjack, 11/2

“False” positives:
- 1-3pm, w/d, R-Ariz, PC-110
Tag classification

Assign EXPN, NUM, NORD etc to NSWs:

□ domain independent features:
 – all caps, no vowels, numeric etc.

□ domain dependent features:
 – alphabetic sub-classifier for EXPN, ASWD and LSEQ

Tested CART and Maximum Entropy models
Alphabetic tag sub-classification

NSW tag t for alphabetic observations o

NATO: ASWD, PCMCIA: LSEQ, frplc: EXPN

\[p(t|o) = \frac{p_t(o|t)p(t)}{p(o)} \]

where $t \in \{ASWD, LSEQ, EXPN\}$.

- $p_t(o|t)$ estimated by a letter trigram model
 \[p_t(o|t) = \prod_{i=1}^{N} p(l_i|l_{i-1}, l_{i-2}), \]

- $p(t)$ prior from data or uniform
- normalized by
 \[p(o) = \sum_t p_t(o|t)p(t) \]
Alphabetic tag sub-classification

LLM features are fed into overall classifier through 6 features

| Token | $p(\text{ASWD}|o)$ | $p(\text{LSEQ}|o)$ | $p(\text{EXPN}|o)$ | p_{max} | t_{max} | diff 1-2 |
|-------|---------------------|--------------------|--------------------|-----------------|-----------------|----------|
| mb | 0.0001 | 0.0038 | **0.9962** | 0.9962 | EXPN | 0.9924 |
| Grt | 0.0024 | 0.0000 | **0.9976** | 0.9976 | EXPN | 0.9952 |
| NBA | 0.0017 | **0.9983** | 0.0000 | 0.9983 | LSEQ | 0.9966 |
| Cust | **0.5456** | 0.0000 | 0.4544 | 0.5456 | ASWD | 0.0912 |
Using LLM features alone

<table>
<thead>
<tr>
<th>Domain</th>
<th>NANTC</th>
<th>ads</th>
<th>pc110</th>
<th>RFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>83.9[ASWD]</td>
<td>80.53[EXPN]</td>
<td>63.77[ASWD]</td>
<td>69.98[ASWD]</td>
</tr>
<tr>
<td>Uniform</td>
<td>88.92</td>
<td>98.5</td>
<td>90.83</td>
<td>97.36</td>
</tr>
<tr>
<td>Unigram</td>
<td>95.72</td>
<td>98.74</td>
<td>92.27</td>
<td>97.92</td>
</tr>
</tbody>
</table>
Full tag classification

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>NANTC</th>
<th>ads</th>
<th>pc110</th>
<th>RFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No LLM Feats</td>
<td>97.7</td>
<td>92.7</td>
<td>90.9</td>
<td>97.3</td>
</tr>
<tr>
<td>All LLM feats</td>
<td>98.1</td>
<td>93.5</td>
<td>91.8</td>
<td>96.8</td>
</tr>
</tbody>
</table>
Algorithmic expansions

- SLNT, NONE: expand to nothing
- ASWD, PUNC: expand to themselves
- LSEQ: as letters
- NUM: expands integers, floats, roman to string of words
- NORD: expands to ordinals
- NYER: as number pairs (except 00 and 000)
- NADDR, NZIP, NTEL, NDATE, NTIME: specific expanders
- NIDE: letters as letters, numbers as pairs
- MONEY, BMONY: as currency
- PRCT: as NUM with “percent”
- EMAIL, URL: treated ASWD (though should not be)
- MSPL, FNSP, OTHER: treated ASWD (though should not be), never predicted
EXPN expansions

How to find the expansion of an abbreviation:
– “wbfpl” → “wood burning fireplace”
– “BR” → “bedroom”
– “Fl” → “Florida” or “Floor”

Not simple lists:
– 32 different abbrevs for “bedroom”
– Productive: SQH, SB, Newingtn

In *supervised* case use labelled expansions
error rate:

without language model 6.7%
without language model 4.8%
What about *unsupervised case*?

- Assume expanded form somewhere in corpus
- Build letter deletion model from known EXPNs
 - CART predicts prob of letter deletion (88% accuracy)
 - convert CART to WFST
 - compute
 \[
 [SW \circ A \circ NSW]^{-1}
 \]
 (4)
 - build a WFST for weighted lattice of possible expansions of a potential NSW.
Unsupervised prediction of expansions

1. All singleton SWs + bigrams > 3 times: 33% error rate
2. as 1 plus standard abbrevs: 24%
3. as 2 but
 - expand on training set
 - use language model
 - select most frequent expansion alone: 19.9%
4. as 3 but
 - select best 2 and reestimate probs: 19.9%
Further issues in EXPN expansions

1. Need better model of expansion:

 OEPN OPEN PERENNIAL
 DALLIN DAVID ALLAIN
 MASHPEE MARSH PROPERTIES
 SEAVIEW SEASONAL VIEWS
 WIGET WITHGUESTS

2. Current ignoring case (unsupervised)

3. What is *likely* to be abbreviated
 \(- p(t|w): BTW \rightarrow {\text{because the windows}}\)
Language Modeling

- Grand schemes:
 - trigger models
 - maximum entropy

- Simple smoothed backed off trigrams

- Applied to pseudo-words:
 ... lives at 123 Norman St. ...
 ... lives at NADDR Norman St. ...
Baseline results

LDC tools: LDC text conditioning tools

Festival: 1.4.0 released text analyzer

<table>
<thead>
<tr>
<th></th>
<th>LDC tools</th>
<th>Festival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TER</td>
<td>WER</td>
</tr>
<tr>
<td>nantc</td>
<td>–</td>
<td>2.88</td>
</tr>
<tr>
<td>classifieds</td>
<td>–</td>
<td>30.81</td>
</tr>
<tr>
<td>pc110</td>
<td>–</td>
<td>22.36</td>
</tr>
<tr>
<td>rfr</td>
<td>–</td>
<td>9.06</td>
</tr>
</tbody>
</table>
Domain dependent model

- domain independent splitter
- CART tag classifier with letter language model features
- EXPNs by WFST
- Language model

<table>
<thead>
<tr>
<th></th>
<th>festival</th>
<th></th>
<th>m4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TER</td>
<td>WER</td>
<td>TER</td>
<td>WER</td>
</tr>
<tr>
<td>nantc</td>
<td>1.00</td>
<td>1.38</td>
<td>0.39</td>
<td>0.82</td>
</tr>
<tr>
<td>classifieds</td>
<td>30.09</td>
<td>33.48</td>
<td>7.00</td>
<td>9.71</td>
</tr>
<tr>
<td>pc110</td>
<td>14.37</td>
<td>32.62</td>
<td>3.66</td>
<td>9.25</td>
</tr>
<tr>
<td>rfr</td>
<td>6.28</td>
<td>16.19</td>
<td>0.94</td>
<td>2.07</td>
</tr>
</tbody>
</table>
Removing components

m4.nolm: no language model (most prob EXPN)

m4.noef: no letter language models feats

m4.noeflm: no LM and no LLM feats

<table>
<thead>
<tr>
<th></th>
<th>m4</th>
<th>m4.nolm</th>
<th>m4.noef</th>
<th>m4.noeflm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TER</td>
<td>WER</td>
<td>TER</td>
<td>WER</td>
</tr>
<tr>
<td>nantc</td>
<td>0.39</td>
<td>0.82</td>
<td>0.39</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>classifieds</td>
<td>7.00</td>
<td>9.71</td>
<td>6.82</td>
<td>9.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rfr</td>
<td>0.94</td>
<td>2.07</td>
<td>0.93</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Giving truth

m4.nosplt: uses hand labeled splits

m4.nost: uses hand labeled splits and actual tags

<table>
<thead>
<tr>
<th></th>
<th>m4</th>
<th>m4.nosplt</th>
<th>m4.nost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TER</td>
<td>WER</td>
<td>TER</td>
</tr>
<tr>
<td>nantc</td>
<td>0.39</td>
<td>0.82</td>
<td>0.20</td>
</tr>
<tr>
<td>classifieds</td>
<td>7.00</td>
<td>9.71</td>
<td>5.40</td>
</tr>
<tr>
<td>pc110</td>
<td>3.66</td>
<td>9.25</td>
<td>2.58</td>
</tr>
<tr>
<td>rfr</td>
<td>0.94</td>
<td>2.07</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Cross-domain models

m4.domin: nantc models

m4.dominE: nantc models with domain EXPNs

<table>
<thead>
<tr>
<th></th>
<th>festival</th>
<th>m4</th>
<th>m4.domin</th>
<th>m4.dominE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TER</td>
<td>WER</td>
<td>TER</td>
<td>WER</td>
</tr>
<tr>
<td>nantc</td>
<td>1.00</td>
<td>1.38</td>
<td>0.39</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.39</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.39</td>
<td>0.82</td>
</tr>
<tr>
<td>classifieds</td>
<td>30.09</td>
<td>33.48</td>
<td>7.00</td>
<td>9.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.20</td>
<td>29.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.69</td>
<td>21.18</td>
</tr>
<tr>
<td>pc110</td>
<td>14.37</td>
<td>32.62</td>
<td>3.66</td>
<td>9.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.35</td>
<td>18.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.09</td>
<td>18.07</td>
</tr>
<tr>
<td>rfr</td>
<td>6.28</td>
<td>16.19</td>
<td>0.94</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.71</td>
<td>4.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.32</td>
<td>4.14</td>
</tr>
</tbody>
</table>
Unsupervised domain models

Building models from unlabeled data

- Label tokens with nantc CART tag classifier
- Relabel alphabetics with best LLM prediction
- Build EXPN expander from plain text and labeled EXPNs
- Build words with best EXPN expansion
- Build LM from full expanded words
- Run with multiple EXPNs and LM to choose

<table>
<thead>
<tr>
<th></th>
<th>TER</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>m4</td>
<td>7.00</td>
<td>9.71</td>
</tr>
<tr>
<td>us1.lm</td>
<td>12.50</td>
<td>13.40</td>
</tr>
<tr>
<td>us1.nolm</td>
<td>12.64</td>
<td>13.50</td>
</tr>
<tr>
<td>us2.EXPNlist</td>
<td>10.58</td>
<td>13.51</td>
</tr>
<tr>
<td>m4.dominE</td>
<td>19.69</td>
<td>21.18</td>
</tr>
</tbody>
</table>
NSW model for new domains

- Models for specific domains
- Standard text analyzers fail
- Can build models from unlabeled data

57 ST E/1st & 2nd Ave Huge
drmn 1 BR 750+ sf, lots of sun &
clsts. Sundeck & Indry facils. Askg
$187K, maint $868, util
incl. Call Bkr Peter 914-428-9054.
Results

- Marked up databases
- Tools to help label databases
- Tools and methods for building models
- 4 domain models
- Text expander better than LDC or Festival
- Tools and methods for building unsupervised models
But what if there are no spaces?

- Chinese, Japanese etc. don’t use whitespace
- But still need to tokenize
Some techniques

Requires lexicon of words

☐ Take longest match in lexicon (that gives partition)

☐ or find

$$\hat{w} = \arg\max_w p(w|)$$ (5)

☐ Lattice of all possible partitions and find most probable
Number pronunciation

In languages with gender, declensions etc.

1 niño → un niño (one boy)
1 niña → una niña (one girl)

1 hermano → un hermano (one brother)
1 hermana → una hermana (one sister)

Can’t just look at a/o ending letter

1 país → un país (one country)
1 ra’iz → una ra’iz (one root)

Slavic languages have many variations for numbers making it harder.
End of Text Analysis

From strings of characters to lists of words

☐ Tokenize string of chars
☐ Chunk into utterance sized chunks
☐ Identify token types (homographs, numbers etc)
☐ Expand tokens with token to word rules