Improving Phrase Prediction

Alok Parlikar (various and PhD thesis)
Phrasing

Phrase Breaks Indispensable in Natural Speech

• Breathing Rhythm
• Emphasis
• Intelligible Speech
• Dramatic Effects (Applause)
Phrasing

Phrase Breaks Important in Synthetic Speech

- Foundation of Synthetic Prosody
- Critical for natural, stylistic speech
Phrasing

Objective: Insert breaks in Utterances

He washed and fed the dog.

He washed and fed the dog.
Phrasing

Classifier:

Predict each word boundary in text as Break (B) or Non-Break (NB)
Better break prediction

- Base: POS context only
- Can we use Grammar
 - Not syntactic grammars
 - but **phrasal** grammars
Phrasal Grammars

- From natural data
- Using ASR forced alignment
 - Find word boundaries and pause boundaries
- Label words with POS tags
 - det noun verb PAUSE det adj noun
 - det noun prp det noun PAUSE verb det noun
- Bracket actual prosodic phrases
 - (det noun verb) (det adj noun)
 - (det noun prp det noun) (verb det noun)
Phrasal Grammars

- Train Stochastic Context Free Grammar SCFG
- Using large bracketed corpus
- Parse new sentences with trained SCFG
- Extract word boundaries features
 - Number of opening/closing brackets
 - Distance to common ancestor
 - Length largest phrase to this point
 - ...

Acoustic + Language Model

- Grammar features/POS tags PLUS
- Language model of B/NB
- Combined model
- Use viterbi to predict at run time
Festival’s Phrasing Architecture

Parlikar and Black, 2011
Low Resource Language Case

- Train from recorded data
 - Can still find phone/silence alignment
- But need POS tagger
 - Have to be created unsupervised
 - Fairly well defined problem
 - Find all words with same context
 - Rename those class X
 - Repeat until enough
- Pretty good at getting function words
Unsupervised Tagset

- English (Jane Austin's Emma)
 - BE HAVE
 - MR MRS
 - AND BUT THAT AS
 - TO FOR OF IN
 - VERY SO
 - HIM ME
 - COULD WOULD
 - SHE HE IT I YOU
 - THE A HER HIS
 - WAS IS HAD
Unsupervised Tagset

- German (Europarl)
 - IN AUF FüR VON
 - DIE DER DEN DIESE EINE
 - KOMMISSION UNION
 - UND DAß WIE
 - WERDEN HABEN
 - ZU MIT BEI
 - WIR SIE ICH
 - IST WIRD SIND
 - DAS ES
 - NICHT AUCH SICH
Unsupervised Tagset

- Chinese (News Text)
 - 中 /f 后 /f
 - 一 /m 两 /m 几 /m 三 /m
 - 年 /q 个 /q
 - , /w 的 /u 了 /u 着 /u
 - 要 /v 已 /d 就 /d
 - 他 /ngp 我 /ngp 我们 /ngp 他们 /ngp 人 /ngp 她 /ngp
 - 也 /d 这 /n 又 /d 还 /d
 - 是 /v 对 /p 在 /p 有 /v
General Phrasing Observations

- Training to optimize Likelihood
- Testing measures accuracy (F-measure)
- Low-data scenario (600 data points per hour)
- Difficult to vary Phrasing Rate
- (Necessary when varying speaking rate)
But we want …

Phrasing Model that is:
- Flexible
- Can combine multiple classifiers
- Can vary the phrasing rate
- Optimized directly to end evaluation metric
Festival's Updated Phrasing Architecture
Loglinear Model

Ideal break sequence

\[b^* = \arg \max_b P(b|t). \]

Context

Directly model the posterior

Weights

Feature functions

Weights estimated by maximizing likelihood of development data. (Gradient Descent, or other search algorithm)
Minimum Error Rate Training

\[P(b|t) = \frac{\exp\left(\sum_{m=1}^{M} w_m b_m(b, t)\right)}{\sum_{b'} \exp\left(\sum_{m=1}^{M} w_m b_m(b', t)\right)} \]

Estimate weights to maximize

- F-measure of breaks, rather than likelihood.
Minimum Error Rate Training

N-best list search

\[b_n = \arg \max_{b \in S_n} \left[\sum_{m=1}^{M} \omega_m h_m(b | T_n) \right] \]

Best phrasing for sentence “n”

Search over phrasing alternatives for that sentence

Learning Weights to minimize Error

\[\omega_1^M = \arg \min_{\omega_1^M} \left[E(D_1^N; \omega_1^M) \right] \]

The F-1 error surface is not smooth!

Gradient-descent not possible
Minimum Error Rate Training

- Inspired from Machine Translation
- Use Basin-Hopping Algorithm for searching optimal weights

Algorithm:
1. Decide which features to use
2. Start with random weights
3. Generate n-best list of phrase breaks
4. on a development set
Experiments

Features used:
- POS sequence model (Taylor and Black 98)
- Break sequence model (Taylor and Black 98)
- Grammar Based Model (Parlikar and Black 11)
- Break-Count

Corpora tested with:
- F2B (BURNIC)
- Two hours of Jane Austen’s book (EH2 from BC2013)
The new phrasing model is better
Phrasing Rate Knob

Can we vary the phrasing rate

Yes! Using the “Break-Count” feature

\[
S = \sum_{i=1}^{M-1} w_i \cdot h_i + w_c \cdot c
\]

Reducing the weight will favor phrasing hypotheses with more breaks

Increasing the weight will favor phrasing hypotheses with fewer breaks
Effect of the Knob

If we desire a particular proportion of breaks, how do we find the knob value?

$$w_c = A \cdot \tan \left(\pi \frac{x - C}{W} \right) + O$$
Knob, as estimated by the Tan Eqn
Phrasing Rate: Accuracy Impact
Do people perceive variations in phrasing rate?
Summary

Log-linear combination of

- phrasing models and arbitrary features
- Weights trained using MERT
- to optimize for F1, rather than likelihood
- “Break count” feature provides a “knob” that can vary the phrasing rate
- People do not perceive small variations in phrasing rate. Typically: Double the phrase breaks if you want to be noticed!
Phrasing Summary

• Two components
 • Context at wound boundary
 • Predictions over time
• Models
 • Local POS
 • Grammar and Phrasal Grammar
 • Log Linear Features combinations
• Useful controls
 • Slow/Fast know for number of breaks