Speech Synthesis: Overview

11-752
Overview

- Speech Synthesis History: From knowledge-based to data driven
 - Formant to Diphone
 - Diphone to Unit Selection
 - Unit Selection to Statistical Parametric

- Optimizing the Problem
 - The right measures, the right algorithm
 - The right databases, the right things to synthesize

- Some Hard Problems
- Evaluation
Physical Models

• Blowing air through tubes…
 – von Kemplen’s synthesizer 1791

• Synthesis by physical models
 – Homer Dudley’s Voder. 1939
More Computation – More Data

- **Formant synthesis (60s-80s)**
 - Waveform construction from components

- **Diphone synthesis (80s-90s)**
 - Waveform by concatenation of small number of instances of speech

- **Unit selection (90s-00s)**
 - Waveform by concatenation of very large number of instances of speech

- **Statistical Parametric Synthesis (00s-..)**
 - Waveform construction from parametric models
Waveform Generation

- Formant synthesis
- Random word/phrase concatenation
- Phone concatenation
- Diphone concatenation
- Sub-word unit selection
- Cluster based unit selection
- Statistical Parametric Synthesis
Building a Research Field

- **Tools**
 - Allow others to easily join the field

- **Common Data Sets**
 - Be able to concentrate on techniques
 - Have common comparisons

- **Evaluation**
 - Realistically compare techniques

- **Have Users**
 - Some one has to care about your results

- **Don’t become stifled**
 - Ensure there are new tasks and directions
Festival Speech Synthesis System

http://festvox.org/festival
General system for multi-lingual TTS
C/C++ code with Scheme scripting language
General replaceable modules
 lexicons, LTS, duration, intonation, phrasing,
 POS tagging tokenizing, diphone/unit selection
General Tools
 intonation analysis (F0, Tilt), signal processing
 CART building, n-grams, SCFG, WFST, OLS
No fixed theories
New languages without new C++ code
Multiplatform (Unix, Windows, OSX)
Full sources in distribution
Free Software
http://festvox.org

“I want it to speak like me!”

- Festival is an engine, how do you make voices
- Building Synthetic Voices
 - Tools, scripts, documentation
 - Discussion and examples for building voices
 - Example voice databases
 - Step by Step walkthroughs of processes
- Support for English and other languages
- Support for different waveform techniques:
 - diphone, unit selection, limit domain, HMM
- Other support: lexicon, prosody, text analysers
"But I want it to run on my phone!"

- FLITE a fast, small, portable run-time synthesizer
- C based (no loaded files)
- Basic FestVox voices compiled into C/data
- Thread safe
- Suitable for embedded devices
 - Ipaq, Linux, WinCE, PalmOS, Symbian
- Scalable:
 - quality/size/speed trade offs
 - frequency based lexicon pruning
- Sizes:
 - 2.4Meg footprint (code+data+runtime RAM)
 - < 0.025 secs “time-to-speak”
Common Data Sets

- Data drive techniques need data
- **Diphone Databases**
 - CSTR and CMU US English Diphone sets (kal and ked)
- **CMU ARCTIC Databases**
 - 1200 phonetically balanced utterances (about 1 hour)
 - 7 different speakers (2 male 2 female 3 accented)
 - EGG, phonetically labeled
 - Utterances chosen from out-of-copyright text
 - Easy to say
 - Freely distributable
 - Tools to build your own in your own language
Blizzard Challenge

- **Realistic evaluation**
 - Under the same conditions

- **Blizzard Challenge [Black and Tokuda]**
 - Participants build voice from common dataset
 - Synthesis test sentences
 - Large set of listening experiments
 - Since 2005, now in 9th year
 - 15-20 groups (Academia, Research Labs and Commercial Companies)
Blizzard tests:

- *Do you like it? (MOS scores)*
- *Can you understand it?*
 - SUS sentence
 - The unsure steaks overcame the zippy rudder

Can’t this be done automatically?

- *Not yet (at least not reliably enough)*
- *But we now have lots of data for training techniques*

Why does it still sound like robot?

- *Need better (appropriate testing)*
Speech Synthesis Techniques

- Unit selection
- Statistical parameter synthesis
- Automated voice building
 - Database design
 - Language portability
- Voice conversion
Unit Selection

• Target cost and Join cost [Hunt and Black 96]
 – Target cost is distance from desired unit to actual unit in the databases
 • Based on phonetic, prosodic metrical context
 – Join cost is how well the selected units join
Cluster units [Donovan et al 96, Black et al 97]

\[
A_{dist}(U, V) = \begin{cases}
\text{if } |V| > |U| & A_{dist}(V, U) \\
\frac{W_{D*|U|}}{|V|} \times \sum_{i=1}^{n} \sum_{j=1}^{|V|} \frac{W_j \cdot (\text{abs}(F_{ij}(U) - F_{ij*|V|/|U|_j}(V)))}{SD_j \times n \times |U|}
\end{cases}
\]

|U| = number of frames in U

F_{xy}(U) = parameter y of frame x of unit U

SD_j = standard deviation of parameter j

W_j = weight for parameter j

WD = duration penalty
Unit Selection Issues

• Cost metrics
 – Finding best weights, best techniques etc

• Database design
 – Best database coverage

• Automatic labeling accuracy
 – Finding errors/confidence

• Limited domain:
 – Target the databases to a particular application
 – Talking clocks
 – Targeted domain synthesis
Unit Selection
The “standard” method
“Select appropriate sub-word units from large databases of natural speech”

Parametric Synthesis: [NITECH: Tokuda et al]
HMM-generation based synthesis
Cluster units to form models
Generate from the models
“Take ‘average’ of units”
Old vs New

Unit Selection:
- large carefully labelled database
- quality good when good examples available
- quality will sometimes be bad
- no control of prosody

Parametric Synthesis:
- smaller less carefully labelled database
- quality consistent
- resynthesis requires vocoder, (buzzy)
- can (must) control prosody
- model size much smaller than Unit DB
Parametric Synthesis

- Probabilistic Models
 \[
 \text{argmax}(P(O|W))
 \]

- Simplification
 \[
 \text{argmax}(P(o_0|W), P(o_1|W), ..., P(o_n|W))
 \]

- Generative model
 - Predict acoustic frames from text
ASR vs SPSS
- Similar techniques but not the same

Model training techniques
- Alignment, and cluster features
- MLLR (adaptation from multi-speaker models)

Model improvement techniques
- Minimum generation error
- Label optimization

Parameterization techniques
- MFCC, LSP, STAIGHT, HSM
- Excitation modeling techniques
SPSS Goals

- **Require optimal parameterization that**
 - Is derivable from speech
 - Can generate high quality speech
 - Is predictable from text

- **Candidates**
 - Spectral, F0, excitation
 - Formants, nasality, aspiration
 - Articulatory features
- **HTS (NITECH)**
 - Based on HTK
 - Predicts HMM-states
 - (Default) uses MCEP and MLSA filter
 - Supported in Festival

- **Clustergen (CMU)**
 - No use of HTK
 - Predicts Frames
 - (Default) uses MCEP and MLSA filter
 - More tightly coupled with Festival
Building Synthetic Voices

The “standard” voice requires …
- A phone set
- Pronunciations:
 - Lexicon/letter-to-sound rules
- Phonetically and prosodically balanced corpus
 - Spoken by a good speaker
- Text analysis:
 - Number, symbol expansion, etc
- Prosodic modeling
 - Phrasing, intonation, duration etc
- Waveform generation
 - Diphones, unit selection, parametric synthesis
- Something else that is hard:
 - No vowels (Arabic), no word segmentation, number declensions
Designing a good corpus

- From a large set of text
 - Select “nice” utterances
 - 5 to 15 words, easy to say
 - All words in lexicon, no homographs

- Convert text to phoneme strings
 - Possibly with lexical stress, onset/coda, tone etc

- Select utterances that maximize di/triphone coverage

- Looking for around 1000 utterances

- Can seed initial data with “domain” data

- CMU ARCTIC databases
 - 7 x single speaker English DBS
 - 1200 phonetically balanced utterances
Hard Synthesis Problems

- **Text Normalization**
- **Intonation modeling**
 - Intonation evaluation
- **Style modeling**
 - Choosing the right style
 - Evaluating the result
Text Normalization

- **Finding the words**
 - Tokenizing, homograph disambiguation etc
 - “$1.25” vs “$1.25 million” vs “$1.25 song”

- **Very large number of rare events**

- **Formalized systems exist**
 - Trained from data, optimized and out-of-date

- **Long term updated hacks rule systems**

- **ML Challenge**
 - Such a problem cannot be done by machine learning
Intonation Modeling

- **Accents, Phrases and F0**
 - Lots of statistical models available
 - Lots of “objective” measures:
 - RMSE, Correlation
 - No good subjective measures

- **Listening tests**
 - Natural Intonation: good
 - Naïve intonation: bad
 - Various cute models for intonation: meh
Improving Understanding

- Take reading comprehension stories
 - For children’s reading tests, or TOEFL

- Synthesis with:
 - Natural Intonation
 - Naïve models
 - Various cute models

- Human listening tests
 - Answer questions about stories
 - Best system: Naïve models 😞
Style Modeling

- **Classic Emotion Modeling**
 - Happy, sad, angry and neutral
 - But no one needs that

- **Style Modeling**
 - Polite, command, empathic

- **Style usage**
 - When can it be used?
 - How much should be used?
Record human-human dialog
 • Label dialog states:
 - Implicit confirmation, corrections, discourse markers

Build dialog state sensitive voice
 • Using dialog state in features

Must be closely integrated into SDS
 • Timing, dialog state appropriate

But how do you test it?
Voice Transformation

- Collect small amount of data
 - 50 utterances
- Adapt existing voice to target voice
- Adaptation: What makes a voice:
 - Lexical choice
 - Phonetic variation
 - Prosody
 - Spectral/vocal tract/articulatory movement
 - Excitation mode
- Use articulatory modeling for transformation (Toth)
- Festvox GMM transformation suite (Toda)

<table>
<thead>
<tr>
<th>awb</th>
<th>bdl</th>
<th>jmk</th>
<th>slt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications

- Speech output is only one component
- Need to integrate with larger applications
 - Spoken Dialog Systems
 - Speech-to-Speech Translation Systems
 - Talking Heads
 - Conversational participants
 - Information delivery
Conclusions

• Synthesis has improved
 – But there is still much to do
 – Isolated sentences are clear …
 – … But conversational speech still in the future

• Speech Systems must adapt
 – To their usage
 – And their funding conditions

• But we can always fall back on our talents