Speech Processing 11-492/18-492

Speech Recognition
 Intro
 Acoustic modelling
 HMMs
Speech Recognition

- **From acoustics to text**
- **Acoustic modeling**
 - Recognizing all forms of all phonemes
- **Language modeling**
 - Expectation of what might be said
- **We need both to do recognition**
Last Saturday in Hawaii, numerous Waipouli vacationers were shocked to find their beach cordoned off for a UC Berkeley Drama enactment of "Personal office space". The play features exclusively topless men and women in an everyday office environment. Richard Carlson, one of the annoyed tourists and a regular swimmer at Waipouli beach, complained that they really knew how to wreck a nice beach with the nudist play. Many of the tourists appeared ruffled by the content and fled the scene to avoid compromising photos.

In yesterday's press release, AT&T unveiled SpeechKit, its new speech recognition toolkit. According to Michael Armstrong, the COO of the company, the most innovative feature of the system is its revolutionary three-dimensional interface, which opens a new universe of possibilities for the speech recognition community. During the official software release, Jonathan Blues, a senior researcher at AT&T Labs, explained how to recognize speech with the new display, and how the toolkit has already played a crucial role in his research.
Last Saturday in Hawaii, numerous Waipouli vacationers were shocked to find their beach cordoned off for a UC Berkeley Drama enactment of "Personal office space". The play features exclusively topless men and women in an everyday office environment. Richard Carlson, one of the annoyed tourists and a regular swimmer at Waipouli beach, complained that they really knew how to wreck a nice beach with this nudist play. Many of the tourists appeared ruffled by the content and fled the scene to avoid compromising photos.

In yesterday's press release, AT&T unveiled SpeechKit, its new speech recognition toolkit. According to Michael Armstrong, the COO of the company, the most innovative feature of the system is its revolutionary three-dimensional interface, which opens a new universe of possibilities for the speech recognition community. During the official software release, Jonathan Blues, a senior researcher at AT&T Labs, explained how to recognize speech with this new display, and how the toolkit has already played a crucial role in his research.
Split the task

- **Build Acoustic models**
 - Probability of phones given acoustics

- **Build Language models**
 - Probability of word string
Acoustic models

- Represent all ways to say each phoneme
 - Like “templates” for each phoneme
 - Averages over multiple examples
 - Different phonetic contexts
 - “sow” vs “see” etc
 - Different people speaking
 - Different acoustic environment
 - Different channels
 - (assume channel is similar)
Better Acoustic Models

DTW Template

- Could be averages over multiple examples
- Need to be time normalized
 - Linear interpolate or try to match
- Matching probabilistically
 - What is the probability that example matches
 - Test each frame
Hidden Markov Models

• Markov Process
 – Future can be predicted from the past
 \[P(X_{t+1} \mid X_t, X_{t-1}, \ldots X_{t-m}) \]

• Hidden Markov Models:
 – When the state is unknown
 – A probability is given for each state
Hidden Markov Model

Set of states
Output alphabet

Initial state probabilities
State transition probabilities
State emission probabilities

$S = \{s_1, ..., s_N\}$
$K = \{k_1, ..., k_M\}$

$\Pi = \{\pi_i\}, i \in S$
$A = \{a_{ij}\}, i, j \in S$
$B = \{b_{ijk}\}, i, j \in S, k \in K$

A model $\mu = (A, B, \Pi)$
1. Given a model $\mu = (A, B, \Pi)$, how do we efficiently compute how likely an observation is, $P(O \mid \mu)$.
 – which model is most probable

2. Given observation O and model μ, which state sequence best explains the observations
 – in a model what states are most likely

3. Given O and a space of models, how do we find the best model to explain O
 – how do we training the thing
Given observation O and model M
- Efficiently file $P(O|M)$
- Called **decoding**

Find sum of all paths probabilities

Each path prob is product of each transition in state sequence

Use dynamic programming (generalized DTW)
- Also used in Chart Parsers, Theorem Provers
Finding the Best Path

- **What is the most probable state sequence**
- **Use Viterbi algorithm**
 - Maximize best sequence
 - At each point hold list possible states
 - Hold back-pointer to best previous state
 - Cumulate values along path
- **Because we are looking for BEST**
 - Can ignore other back-pointers
- **(When looking for N-best need more complex structure)**
Parameter Estimation

- **Called** training

- **Use Maximum Likelihood Estimation**
 - Baum-Welch (forward/backward algorithm)

- **Special case of EM (Expectation Maximization)**
 - Run observation and find current probs (forward)
 - Modify probabilities to make observations best path (backward)
 - Repeat until convergence

- **Not globally optimal**
 - May find local maximum
HMM recognition

- A bunch of HMM
 - One for each phone type
- Each observation (e.g. 10ms frame)
 - Probability distribution of possible phone type
- Thus can find most probably sequence
 - Use Viterbi to find best path
But that’s not enough

- But not all phones are equi-probable
- Find word sequences that maximizes
 \[P(W \mid O) \]
- Using Bayes’ Law
 \[\frac{P(W)P(O \mid W)}{P(O)} \]
- Combine models
 - Use HMMs to provide \(P(O \mid W) \)
 - Use language model to provide \(P(W) \)
How many HMM models

- **How many models**
 - One for each thing you want to recognize:
 - One per phone
 - One per word
 - One per city name …

- **What is the size and shape of the model**
HMM Topology

1 state

3 state

3 state with skips
How many models

- **Context Independent models:**
 - One for each phoneme
 - One for silence, noises

- **Triphone models**
 - Context dependent
 - Phone before and after
 - Need lots of data to train this

- **Tied states (semi-continuous)**
 - Build full triphone models
 - Combine low frequency “similar” phones
 - Train again on smaller set
But even that’s not enough

- **HMM for words**
 - *For common words or common in domain*
 - *E.g. City, State (need more than 3 states)*
Search space is very large

- **Prune Viterbi search**
 - Best number of paths
 - Some percentage of probability mass
- **Prune lexical trees**
 - Restrict vocabulary
 - Use language model
 - Or even grammar
Some computational issues

- Probabilities are multiplied along paths
 - They get very small
- Treat probabilities as logs
 - Thus add rather than multiply
 - Typically use negative log probabilities
How much data do you need
- As much as you can get
- More than 10Hrs (100Hrs, 1000Hrs)
- Can take months to train

The larger the models
- The larger the number of parameters
- More data needs to be used for training
- Examples are equi-probable (finding oy-oy examples is hard)
The right type of data

- Training data must match intended domain
 - Male/Female, Native/non-native, UK/US
 - As close to target domain as possible
 - Right channel (cell phone/land line)
How to improve ASR

- Get more data
- Fix bugs
Deep Neural Networks

- **Multilayered (6+) Neural Networks**
 - Replacement for HMMs
 - Typically still trains from HMM aligned data

- **Typically training from 1000s hours**
 - May take weeks to train (even with gpu)

- **Results are much better than HMM**
Summary

- **HMMs**
 - Find probability of observation (decoding)
 - Find best path (Viterbi)
 - Train the parameters (Baum-Welch)

- **Bayes Law**
 - Acoustic model and Language model
Reading

- Section 8.2 Definition of Hidden Markov Model pp 380-393
- Section 8.4 Practical Issues in using HMMS pp 398-405
- In Huang et al.