Speech Recognition
Systems
Other ASR techniques
ASR Systems

◆ How good are they?
 ● Expected ASR
 ● Factors that make things worse

◆ How good do they need to be?
 ● What can you do with low WER?
ASR Tasks

Continual Progress in Speech Recognition at (D)ARPA Evaluations
What makes it worse

- **Channel**
 - Telephone vs Wide band
 - Close-talking vs far-field

- **Style:**
 - Command and Control
 - Limit information getting
 - Limit domain but general speech
 - Machine directed vs Human directed speech
 - Broadcast (performance) vs Conversational
 - Single vs Dialog vs Multiperson
Expected WER: Real-time

- **Command and Control**
 - Limited vocabulary and directed speech
 - < 10% (< 5% for some users)

- **Simple Dialog**
 - Machine directed speech with interested users
 - < 20% (but sometimes works with < 30%)

- **Dictation**
 - Single speaker, well performed
 - <5% for some users > 30% for (short term) users

- **Speech-to-Speech Translation**
 - Machine mediated, target domain
 - <20% (but will vary for different people)
Expected WER: offline

- **Broadcast News**
 - Large vocabulary, well performed
 - <10% but not real-time (maybe 100 times real time)

- **Conversational Speech (Call Home)**
 - Large vocabulary, not well performed
 - > 40% WER (depends on particular users and conversations)
 - Switchboard can be < 5% (Microsoft 2016)

- **Information retrieval**
 - Large vocabulary very varied content
 - > 60% can still give useful results
Other uses

- TV show subtitling for the deaf
- Court transcription
- Medical dictation
- Air traffic control transcription
Other ASR techniques

- Including Articulatory/Phonetic Features (Metze)
- Build recognizers for
 - Voiced/unvoiced
 - Nasality
 - Closures (quiet part of stops)
 - Aspiration (Fricatives)
 - Tongue position
- Run all in parallel and “join” them
- Combine with more standard approaches
- Can be more robust to speaking style
Articulatory Features

These seem to discriminate better
Multi-engine Recognition

- Use three recognizers and combine results
- Rover
 - Combine scores per-sentence
- Combine lattices
 - Confusion networks
- Cross adaptation
 - Interleave systems with adaptation
- It usually works better when system different
 - (and both of them good)
Whispered Speech

- Doesn’t disturb other people
- Can use throat mike
- Works in noisy environment
Muscle Movement

- **EMG: Electromyographic Signals**
 - Recognize muscle impulses

- Can work in noisy environments

- Can work without you making a noise
Articulatory Movement

- Attach metal studs to:
 - Lips, teeth, tongue, velum
- Record movement in magnetic field
 - Non-intrusive
EMA: Electromagentoarticulatograph
ASR Summary

- **ASR requires:**
 - **Acoustic model**
 - HMMs trained from lots of data
 - **Pronunciation lexicon**
 - List of pronunciations for words
 - **Language model**
 - Trigrams trained from lots of data
ASR Trade-offs

- More/better training data
 - Well transcribed and closest to target system
- Better signal
 - Better microphone, no noise
- Better speaker
 - Interested party, know how to speak
- Time and memory
 - Bigger systems do better
 - Greater CPU does better
Homework 1

- **Build a speech recognition system**
 - An acoustic model
 - A pronunciation lexicon
 - A language model

- **Note it takes time to build**

- **What is your initial WER**
 - How did you improve it

- **Part 1: due 3:30pm Fri 29th Sep**
- **Part 2: due 3:30pm Fri 6th Oct**