Using Speech with Computers

Alan W Black
Overview

- Practical and Theory:
 - Understand Concepts, Implement Solutions
- Speech Synthesis
 - Text to Speech
- Speech Recognition
 - Speech to Text
- Spoken Dialog Systems
 - Interaction with machines
MWF 3:30-4:20

GHC 4101

Lecturer: Alan W Black (awb@cs.cmu.edu)

TA: Sai Krishna Rallabandi
srallaba@andrew.cmu.edu

tts.speech.cs.cmu.edu/courses/11492/
Course Details

- Three lectures a week
- Various readings
- 4 Homeworks
 - Speech Recognition
 - Train a speech recognition system
 - Speech Synthesis
 - Build a synthesizer from your own voice
 - Spoken Dialog System
 - With competition between your dialog systems
- Other
- Final Exam
Homeworks

- **(Mostly) Practical**
 - **Build something that talks/can be spoken to**
 - **Software and speech data will be provided**
 - Will run on Windows/Linux or OSX
 - Access to Linux servers if required
 - **Written description of what you did**
Schedule Details

- **Week 1**
 - Applications, Human and Computer Speech Processing

- **Week 2-4 Speech Recognition**
 - Signal representation, acoustic modeling
 - Language modeling, applications
 - Tuning, evaluation, expectations
Week 5-7 (Oct) Speech Synthesis
- Text processing, prosody, waveform synthesis
- Building voices, evaluations, voice conversion

Week 8 Multilinguality
- Supporting new languages efficiently

Week 9-11 Dialog Systems
- VoiceXML, Mixed initiative, barge-in
- Design, installation and tuning.
Course Details

- **Week 12**
 - Speech to Speech translation
 - Language support, tight integration
- **Week 13**
 - Evaluation and expectations
- **Week 14**
 - Speaker ID, Silent Speech, Conversion
 - What still needs to be done.
- **Week 15 (Dec)**
 - Exam
Why Speech

- **Most natural way to communicate**
 - *(For Humans)*

- **Not ideal for everything**
 - *Graphics and text can be better (sometimes)*

- **Doesn’t compress well**

- **Hard to search**
Compression

- **Alice in Wonderland**
 - **Text**
 - 150K uncompressed
 - 43K compressed
 - **Speech (2hrs 20mins)**
 - 270M uncompressed
 - 600K compressed (mp3, 24KBS)
Searching

- **Find all NPR broadcasts mentioning Tesla**
 - *Listen to them all*

- **From lecture recordings**
 - *Find all occurrences of “this will be in the exam”*

- **So listen to it faster …**
 - *Normal*
 - *2x 4x 8x*
Eyes/Hands Free

- **Interaction when driving**
 - Look at screen to see next turnoff
 - “In 200 yards turn right onto Murray Ave.”

- **Blind users/ Assistive technology**
 - Text isn’t very useful

- **Alerts**
 - “Self-destruct in 10 seconds” vs blinking light

- **Telephone dialog systems**
Speech Applications

- **Command and Control**
- **Information Agents**
 - IVR Telephone Dialog Systems
 - Agents: Siri, avatars, question/answering
- **Speech to Speech Translation**
- **Speech summarization**
 - Lecture or Meeting summarization
- **Transcription/Dictation**
- **Speaker Identification**
 - emotion/dialect/language
- **Language Learning**
“Hot” Commercial Applications

- **Location-based services:**
 - Yahoo
 - Google Maps
 - Microsoft Live Search
 - Android/iPhone

- **Spoken Assistants**
 - Apple’s Siri, Google NOW, Microsoft Cortana, Echo

- **All phone/pda based**
 - Use speech-in
 - Directions speech-out
Other Speech uses

- **Spoken Dialog Systems**
 - Amazon Alexa, Apple Siri, Microsoft Cortana, Google Home

- **Assistive Technologies**
 - Screen readers
 - Augmentitive and assistive communication devices

- **On-line Personalization**
 - Blogcasts (your voice, or appropriate voice)
 - Game character customization

- **Talking Heads**
 - CMU’s roboceptionist

- **Singing Synthesis**
 - XML interface for song specification