Speech Processing 11-492/18-492

Speech Translation
Speech Translation

◆ Three part systems
 ● ASR -> Translation -> TTS

◆ System configurations
 ● One way – phrasal
 ● One way – broadcast/lecture
 ● 1.5 way – phrasal with limited answers
 ● Two way – full two way
Machine Translation Technologies

- Phrasal
 - Phrase to phrase look up

- Template:
 - Template fillers, fixed translation

- Interlingua
 - Translation into meaning representation

- Statistical Machine Translation
 - From large collect of parallel text

- Classification base translation
 - Identify classes and deal directly with them
Choices in Translation

◆ Choose any two ...
 - High accuracy
 - Large vocabulary
 - Fully automatic

◆ Speech vs Text
 - Speech less clear than text
 - Less speech to train from
 - Needs to be real-time (probably)
Simple Translation

◆ Phrase to Phrase
 ● Greetings
 ● Do you need medical attention?
 ● Relatively easy to build, but limited use

◆ Template translations
 ● The next train leaves at TIME from gate GATE form PLACE
 ● Limited but still useful
Interlingua

- Translate sentences into standard form
- Generate sentences from standard form

PROS:
- Can do multiple languages easily
- Can be very accurate

CONS
- Designing universal interlingua is very hard
- Doesn’t do well when out of domain
Build probabilistic models from parallel text

Parallel text often available from

- Bilingual organizations
 - Governments, UN

- Relatively easy to collect
 - Requires translators rather than MT experts
Learning from Parallel Text

<table>
<thead>
<tr>
<th>English</th>
<th>Lhiyohlili</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The dog chases the cat</td>
<td>Ofi'at kowi'ã lhiyohli</td>
</tr>
<tr>
<td>2. The cat chases the dog</td>
<td>Kowi'at ofi'ã lhiyohli</td>
</tr>
<tr>
<td>3. The dog stinks</td>
<td>Ofi'at shoha</td>
</tr>
<tr>
<td>4. The woman loves the man</td>
<td>Ihooat hattakã hollo</td>
</tr>
<tr>
<td>5. I chase her/him</td>
<td>Lhiyohlili</td>
</tr>
<tr>
<td>6. She/he chases me</td>
<td>Salhiyohli</td>
</tr>
<tr>
<td>7. She/he dances</td>
<td>Hilha</td>
</tr>
</tbody>
</table>
Learning from Parallel Text

1. Ofi'at kowi'ã lhiyohli	1. The dog *chases* the cat
2. Kowi'at ofi'ã lhiyohli	2. The *cat chases* the dog
3. Ofi'at shoha	3. The *dog stinks*
4. Ihooat hattakã hollo	4. The *woman* loves the *man*
5. Lhiyohlili	5. I *chase* her/him
6. Salhiyohli	6. She/he *chases* me
7. Hilha	7. She/he *dances*
Pros:
- Data collection doesn’t require MT experts
- Data driven
- Degrades gracefully when out of domain

Cons:
- Needs all language pairs
- Needs good/lots of data
- Hard to fix specific errors
Speech isn’t text
- Different style, hard to find lots of examples

Speech isn’t fluent
- False starts, hesitations, ungrammatical

ASR never makes errors 😊
One Way: Broadcast

- **One speaker**
 - Lecturer: can modify language model

- **Multiple speakers**
 - May be repeat speakers (News Anchor)
 - May had other noises: music etc
 - (TV programs)

- Doesn’t need to be real time (maybe)
Two Way: Dialog

- Users can detect own errors and correct
- Needs to be real time
- One user may be much more familiar
- How do you teach the other user
- Typically domain directed
Speech Technology Issues

- **ASR:**
 - Disfluencies, dialects, speaking style
 - Unfamiliarity with system

- **TTS:**
 - MT output isn’t always fluent
 - TTS says it anyway
 - Can be hard to understand
Speech Technology Issues

- **Spoken not Written Languages**
 - Arabic vs Arabic Dialects
 - Mixture of languages
 - Politeness levels
 - Gender in speech