Speech Processing 11-492/18-492

Speech Synthesis
Waveform generation
Speech Synthesis

- **Text Analysis**
 - Chunking, tokenization, token expansion

- **Linguistic Analysis**
 - Pronunciations
 - Prosody

- **Waveform generation**
 - From phones and prosody to waveforms
Physical Models

• **Blowing air through tubes…**
 – von Kempen’s synthesizer 1791

• **Synthesis by physical models**
 – Homer Dudley’s Voder. 1939
More Computation – More Data

- **Formant synthesis (60s-80s)**
 - Waveform construction from components

- **Diphone synthesis (80s-90s)**
 - Waveform by concatenation of small number of instances of speech

- **Unit selection (90s-00s)**
 - Waveform by concatenation of very large number of instances of speech

- **Statistical Parametric Synthesis (00s-..)**
 - Waveform construction from parametric models
Waveform Generation

- Formant synthesis
- Random word/phrase concatenation
- Phone concatenation
- Diphone concatenation
- Sub-word unit selection
- Cluster based unit selection
- Statistical Parametric Synthesis
Concatenative Synthesis

- Use human speech
- Need to design database
- Need to carefully label it
- Need to impose prosody on selections
- Results depend on DB contents
 - You get good synthesis
 - But style is like the databases
Diphone Synthesis

- Use databases of natural speech
- From mid-phone to mid-phone
 - Requires phones squared – diphones
- Needs very good definition of phoneset
 - Dialect of speaker becomes important
Diphone Databases

Collect nonsense carrier words

- $t\text{ aa } b\text{ aa } b\text{ aa}$
- $t\text{ aa } m\text{ aa } m\text{ aa}$
- $t\text{ iy } b\text{ iy } b\text{ iy}$
- Good for coverage, consistent
- Not very natural

Collect from “natural” words

- Quebecois arguments (19)
- Arkansas arranging (11)
- Good for naturalness, but maybe not consistent
Recording Databases

- Do recording in best conditions possible
 - Recording studio
 - Head mounted mike
 - Repeatable conditions

- Explain to voice talent
 - Get *signed* permission
 - You are going to steal their voice!
Diphone Limitations

- **Only get fixed inventory**
 - Need more than phone-phone
 - Need stressed, positional examples
 - What about consonant clusters?
- **Get more representative samples**
 - Larger databases
 - More natural
 - Harder to ensure it is correct
Database Design

- **Requires:**
 - Good phonetic coverage
 - Good prosodic coverage
 - Easy to read sentences (few mistakes)
 - Consistent delivery
Database Design

- From large databases of text
 - E.g. out-of-copyright books

- Find “nice” sentences
 - Contain only high frequency, easy to pronounce words
 - 5-15 words long
 - No homographs

- Greedily select “nice” sentences with
 - Best phone/diphone/triphone coverage
 - Best characters/dicharacter/tricharacter coverage

- Consider multiple genres
 - Novels, news, bus stops (domain dependent)
CMU ARCTIC Databases

- **1132 sentences (about an hour of speech)**
 - *Author of the danger trail, Phillip Steels etc.*
 - *
- **12 different speakers**
 - *Different English accents*

- **Technique used for other languages**
Select appropriate sub-word units from databases of natural speech

Not simply word concatenation

Not simply longest phrase

Balance

- Appropriate unit
- Good join costs
• **Target cost / Join cost [Hunt and Black 96]**
 – Target cost is distance from desired unit to actual unit in the databases
 • Based on phonetic, prosodic metrical context
 – Join cost is how well the selected units join
Clustering Units

Cluster units [Donovan et al 96, Black et al 97]

\[
A\text{dist}(U, V) = \begin{cases}
\text{if } |V| > |U| & A\text{dist}(V, U) \\
\frac{W_D \cdot |U|}{|V|} \cdot \frac{n}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{W_j \cdot (\text{abs}(F_{ij}(U) - F_{ij(\text{abs}|V|/|U|))(V)))}{SD_j \cdot n \cdot |U|}
\end{cases}
\]

|U| = number of frames in U
F_{xy}(U) = parameter y of frame x of unit U
SD_j = standard deviation of parameter j
W_j = weight for parameter j
WD = duration penalty
Unit Selection Issues

- Cost metrics
 - Finding best weights, best techniques etc

- Database design
 - Best database coverage

- Automatic labeling accuracy
 - Finding errors/confidence

- Limited domain:
 - Target the databases to a particular application
 - Talking clocks
 - Targeted domain synthesis
Unit Selection vs Parametric

Unit Selection
- The “standard” method
 “Select appropriate sub-word units from large databases of natural speech”

Parametric Synthesis: [NITECH: Tokuda et al]
- HMM-generation based synthesis
- Cluster units to form models
- Generate from the models
 “Take ‘average’ of units”
Old vs New

- **Unit Selection:**
 - large carefully labelled database
 - quality good when good examples available
 - quality will sometimes be bad
 - no control of prosody

- **Parametric Synthesis:**
 - smaller less carefully labelled database
 - quality consistent
 - resynthesis requires vocoder (buzzy)
 - can (must) control prosody
 - model size much smaller than Unit Sel DB
Example CG Voices

7 Arctic databases:

1200 utterances, 43K segs, 1hr speech

awb bdl
clb jmk
ksp rms
slt
Database size vs. Quality

slt_arctic data size

<table>
<thead>
<tr>
<th>Utts</th>
<th>Clusters</th>
<th>RMS F0</th>
<th>MCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>230</td>
<td>24.29</td>
<td>6.761</td>
</tr>
<tr>
<td>100</td>
<td>435</td>
<td>19.47</td>
<td>6.278</td>
</tr>
<tr>
<td>200</td>
<td>824</td>
<td>17.41</td>
<td>6.047</td>
</tr>
<tr>
<td>500</td>
<td>2227</td>
<td>15.02</td>
<td>5.755</td>
</tr>
<tr>
<td>1100</td>
<td>4597</td>
<td>14.55</td>
<td>5.685</td>
</tr>
</tbody>
</table>
Database size vs. Quality

- **SPS**
 - rms_{100}
 - rms_{1132}

- **Unit selection**
 - rms_{100}
 - rms_{1132}
Advantages of SPS

- **Statistical Parameter Synthesis**
 - More robust to errors in data
 - Requires less data
 - Models are smaller (< 2MB vs > 1GB)
 - Parametric models allows further processing
Disadvantages of SPS

- Statistical Parametric Synthesis
 - “buzziness” of resynthesized speech
 - Doesn’t sound as good as the best unit selection
 - Still experimental