Speech Processing 11-492/18-492

Speech Synthesis
Waveform generation 2
Speech Synthesis

- **Text Analysis**
 - Chunking, tokenization, token expansion

- **Linguistic Analysis**
 - Pronunciations
 - Prosody

- **Waveform generation**
 - From phones and prosody to waveforms
Unit Selection Speech Synthesis

- Select appropriate sub-word units from databases of natural speech
- Not simply word concatenation
- Not simply longest phrase
- Balance
 - Appropriate unit
 - Good join costs
Unit Selection

- **Target cost / Join cost [Hunt and Black 96]**
 - Target cost is distance from desired unit to actual unit in the databases
 - Based on phonetic, prosodic metrical contexts
 - Join cost is how well the selected units join
Cluster units [Donovan et al 96, Black et al 97]

\[
Adist(U, V) = \begin{cases}
 \text{if } |V| > |U| & Adist(V, U) \\
 \frac{WD \cdot |U|}{|V|} \times \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{W_j \cdot (\text{abs}(F_{ij}(U) - F_{ij}(|V|/|U|, j)(V)))}{SD_j \cdot n \cdot |U|}
\end{cases}
\]

- \(|U| = \text{number of frames in } U\)
- \(F_{xy}(U) = \text{parameter } y \text{ of frame } x \text{ of unit } U\)
- \(SD_j = \text{standard deviation of parameter } j\)
- \(W_j = \text{weight for parameter } j\)
- \(WD = \text{duration penalty}\)
Unit Selection Issues

- **Cost metrics**
 - Finding best weights, best techniques etc

- **Database design**
 - Best database coverage

- **Automatic labeling accuracy**
 - Finding errors/confidence

- **Limited domain:**
 - Target the databases to a particular application
 - Talking clocks
 - Targeted domain synthesis
Unit Selection vs Parametric

- **Unit Selection**
 - The “standard” method
 - “Select appropriate sub-word units from large databases of natural speech”

- **Parametric Synthesis**: [NITECH: Tokuda et al]
 - HMM-generation based synthesis
 - Cluster units to form models
 - Generate from the models
 - “Take ‘average’ of units”
Old vs New

Unit Selection:
- large carefully labelled database
- quality good when good examples available
- quality will sometimes be bad
- no control of prosody

Parametric Synthesis:
- smaller less carefully labelled database
- consistent quality
- resynthesis requires vocoder (buzzy)
- can (must) control prosody
- model size much smaller than Unit Sel DB
Example CG Voices

7 Arctic databases:

- awb
- clb
- ksp
- slt
- bdl
- jmk
- rms

1200 utterances, 43K segs, 1hr speech
Database size vs Quality

<table>
<thead>
<tr>
<th>Utts</th>
<th>Clusters</th>
<th>RMS F0</th>
<th>MCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>230</td>
<td>24.29</td>
<td>6.761</td>
</tr>
<tr>
<td>100</td>
<td>435</td>
<td>19.47</td>
<td>6.278</td>
</tr>
<tr>
<td>200</td>
<td>824</td>
<td>17.41</td>
<td>6.047</td>
</tr>
<tr>
<td>500</td>
<td>2227</td>
<td>15.02</td>
<td>5.755</td>
</tr>
<tr>
<td>1100</td>
<td>4597</td>
<td>14.55</td>
<td>5.685</td>
</tr>
</tbody>
</table>
Database size vs Quality

- **SPS**
 - rms_{100}
 - rms_{1132}

- **Unit selection**
 - rms_{100}
 - rms_{1132}
Advantages of SPS

- **Statistical Parametric Synthesis**
 - More robust to errors in data
 - Requires less data
 - Models are smaller (< 2MB vs > 1GB)
 - Parametric models allow further processing
Disadvantages of SPS

- **Statistical Parametric Synthesis**
 - “buzziness” of resynthesized speech
 - Doesn’t sound as good as best unit selection
 - But getting better
Parametric Speech Models

- **Emotional Speech Synthesis**
 - Can collect small amounts of emotional speech
 - Build models that transform base model

- **Cross Lingual Speech Synthesis**
 - From language independent models
 - Transform with small amount of target language

- **Use various ASR techniques**
 - Adaptation
 - Discriminative training
 - Use as much CPU as the ASR people
Corpus-based Synthesis

- Doesn’t really “just work”
 - Need to consider database content
 - Speaker style
 - What you send to the synthesizer
The right type of database

- Recording style defines synthesis style
 - News stories will give news style-synthesizer
 - News style not appropriate for dialog system

- Natural vs controlled prompts
 - Natural utterances good for general synthesizer
 - Domain targeted better for domain synthesizer
The right type of speaker

- Professional speakers are better
 - Consistent style and articulation
 - Lecturers, teachers are often better
 - Most people can learn to do it well

- Ideal selection process (AT&T: Syrdal 99)
 - Record 20 professional speakers
 - Build limit synthesizers from them
 - Collect many peoples preferences (> 200)
 - Record the “best” speaker(s)

- Find correlates in human speech
 - High power in unvoiced speech
 - High power in higher frequencies
 - Larger pitch range

- Different people prefer different voices
 - Provide a choice
 - Errors are sometimes diminished by novelty
The right type of things to synthesize

- Instead of making the DB appropriate
 - Restrict the text input

- Domain synthesis
 - “The temperature is X degrees and the outlook is Y”.

- Make the database directly match text
 - Fill templates with values
General Unit Selection Synthesis
- Can be high quality
- Sometimes bad quality
- Expensive to tune

Limited Domain Synthesis
- Design database to match exactly what you want to synthesize
- Only reasonable if building one voice for each application is easy
Building a Voice

- Designing the Prompts
- Recording the Prompts
- Labeling the Utterances
- Finding parameters (F0, MCEP)
- Building the synthesis voice
- Tuning and Testing
Designing the Prompts

- **From a grammar**
 - System says: The temperature is X degrees

- **From example data**
 - Using example output from the existing system

- **From thinking about it**
 - But you *will* make mistakes

- **Ideally:**
 - Word coverage
 - Bi-gram coverage
 - Prosody position coverage

- **Design prompts to limit prosodic variance**
 - Boston, is that where you want to go?
 - Do you want to go to Boston?
Domains

- **Fixed template filling**
 - Talking clocks, 24 utterances
 - Weather 100 utterances (don’t say place name)

- **Larger domains (spoken dialog systems)**

- **Let’s Go bus information (Hybrid)**
 - Standard prompts
 - Times and bus numbers
 - 15,000+ bus stop names (not fully included)
 - Backup general synthesis prompts
A talking clock

Design the prompts:

- The time is now, about five past one, in the morning
- The time is now, just after ten past two, in the morning
- The time is now, exactly quarter to three, in the morning
- The time is now, almost twenty past four, in the morning

Get full word coverage

- *really* test you have word coverage
- No, *really* test you have word coverage
Record the prompts

- Get highest quality recordings
 - Recording studio
 - Head mounted mike
 - Repeatable conditions

- Get signed permission
 - Explain what you are doing
Label the data

- Using HMM-based or DTW-based system
 - Find the phoneme segments
- Simple cases (< 50 utterances)
 - Use DTW
 - Synthesize the prompts
 - Align synthesized prompts with actual prompts
Automatic Labeling

Phonetic

dh ax t ay m ih z n aw pau
Automatic Labeling (bad)
Parameterization

- **Extract pitch marks from data**
 - Find voices/unvoiced regions
 - Add “fake” pitch marks during unvoiced regions
- **Extract MFCC pitch synchronously**
 - Instead of a fixed frame advance (e.g. 5ms)
 - Extract it at each pitch mark
 - Try to capture the spectrum at the pitch period
Building a LDOM synthesizer

- Build cluster tree on each unit type
 - Not just on phones
 - Tag phones with word they come from
 - `d_limited` and `d_domain` are treated as different
Tuning and Testing

- **Test it on some real data**
 - Ensure number/symbol expansions are correct

- **Prompts should probably be word expanded**
 - Flight US187 -> flight u s one eight seven

- **Remove bad prompts**
 - Or fix labels

- **Remember to keep access to the speaker**
 - If you have to update the system, you need the same speaker available
Summary

- **Unit selection vs Statistical Parametric Synthesis**
 - Unit Sel: can be excellent (but not always)
 - SPS: more robust

- **Building a voice**
 - Databases design, recording, labeling
 - Parameter extraction and model building

- **Limited domain synthesis**