Speech Processing 11-492/18-492

Speech Recognition
 Template matching
Speech Recognition by Templates

- A little history …
- Matching Templates
- DTW (Dynamic Time Warping)
- Beyond template matching
Radio Rex (1922)

- Toys always lead technology …
- Call “Rex” and he comes out of his kennel

(Crystalradio.com and Rhys Jones)
Toy ASR “Tricks”

- **Radio Rex**
 - Recognizes vowel formants in “EH”
- **Voice activated toy train**
 - Multilingual stop/go hashire/tomate
- **Toys “pets” don’t need perfect ASR**
Template Matching

- Record templates from user
 - Store in library
- Record ASR example
 - Compare against each library template
- Select closest example
- For example ...
 - On a voice dialing system
Voice Dialing System

- Library
 - Mom
 - Dad
 - Bob
 - Mario’s Pizza

- Let’s Go Bus Information System
Matching in Time Domain

- **Duration**
 - Will discriminate some examples
 - But Mom, Bob and Dad will be confused
- What about spectral properties
Matching in Frequency Domain

Mom

Bob
Different deliveries

- We change durations
 - Two utterances are never the same
- When it fails we change our delivery
 - Become more articular
 - “clearer”
Dynamic Time Warping

Template

Sample Speech
DTW algorithm

For each square

- \(\text{Dist}(\text{template}[i], \text{sample}[j]) + \) \(\text{smallest_of (Dist(} \text{template}[i-1], \text{sample}[j]) \) \(\text{Dist}(\text{template}[i], \text{sample}[j-1]) \) \(\text{Dist}(\text{template}[i-1], \text{sample}[j-1]) \)

Remember which choice you took (count path)
Multiple Templates

- Compare against each
- Find closest
- Need to normalize scores
 - (divide by length of matches)
Matching Templates

For Word in Templates
 Score = dtw(Template[Word], Sample);
 if (Score < BestScore)
 BestWord = Word;
 DoAction(Action[BestWord])
DTW issues

- What happens with no-matches
 - Need to deal with none of the above

- What happens with more templates
 - Harder to choose between
 - Once variance greater than differences

- Choose templates that are very different
DTW/Template Applications

- Voice dialer
- Simple command and control
- Speaker ID
For Speaker in Templates
 Score = dtw(Template[Speaker], Sample);
 if (Score < BestScore)
 BestSpeaker = Speaker;
DTW

- **Advantages**
 - Works well for small number of templates (<20)
 - Language independent
 - Speaker specific
 - Easy to train (end user controls it)

- **Disadvantages**
 - Limited number of templates
 - Speaker specific
 - Need actual training examples
More reliable matching

• Distance metric
 – Euclidean \[\sqrt{\sum_{i=0}^{N} (T_i - S_i)^2} \]

• But some distances are bigger than others
 – Silence is pretty similar
 – Fricatives are quite larger
 • A longer fricative might give large score
 • A longer vowel might give smaller score
More reliable matching

• Having multiple template examples
 – Individual matches or
 – Average them together

• DTW align all of the examples

• Collect statistics as a Gaussian
 – Mean and standard deviation for each coeff

\[\{ \mu_0, \sigma_0, \mu_1, \sigma_1, \mu_2, \sigma_2, \ldots \} \]
More reliable distances

• Instead of Euclidean distance
 – Doesn’t care about the standard deviation

$$\sqrt{\frac{N}{\sum_{i=0} (T_i - S_i)^2}}$$

• Use Mahalanobis distance
 – Care about means and standard deviation

$$\sqrt{\frac{N}{\sum_{i=0} \left(\frac{\mu_i - S_i}{\sigma_i} \right)^2}}$$
Extending Template matching

- **String word templates together**
 - Need to find word segmentation

- But there are many words …
Extending template model

- **String phoneme templates together**
 - A template model for each phoneme

Sample

- k
- ae
- t

Phoneme Templates

- Phone0
- Phone1
- Phone2
- ...

Summary

- **Speech Recognition by Templates**
 - Good for simple small vocabulary tasks

- **Dynamic Time Warping (DTW)**
 - Can match different durational examples

- **Averaging over multiple models**

- **Distance metrics**
 - Euclidean vs Mahalanobis