Speech Processing 11-492/18-492

Speech Recognition
Signal Processing
Analog to Digital

- Speech (sound) is analog
 - Computers are digital
 - We need to convert
- Sample from A-D converter
 - N times a second
- How many times a second?
Goals of Signal Processing

- Distinguish between phonetic types
- Be invariant to channel/room conditions
- Be invariant to speaker characteristics
- Computational efficiency
Time vs Frequency Domain

- Human ear distinguishes frequencies
- Initial ASR used time domain features
 - Power
 - Zero crossings (sort of frequency)
Time domain Signal
Speech Spectrogram

Phonetic:

pau w ih l w iy eh v er f er g eh t ih t pau

f0 (Hz): -0.145808 frequency (Hz): 0 delta (msec):
• “beat” /b iy t/ and “bat” /b ae t/
Frequency Domain

• “pencils” /p eh n s ih l z/
Frequency Domain

- “beats pits” / b i y t s p ih t s /
Standard Parameterization

- **Split waveform into “frames”**
 - Advance every 10ms
 - Size around 25ms (overlapping frames)
 - Window them
 - Perform FFT/Mel Cepstral analysis
 - Find Deltas (difference from previous)
 - Find Delta Deltas (difference in delta)
Summary

- **Time domain vs Frequency domain**
- **Parameterization of speech**
 - Frequency domain
 - Short term FFTs
 - FFT vs MEL Cepstrum